Independent Component Analysis

Uri Shaham

January 20, 2025

1 Whitening

Let $X \in \mathbb{R}^m$ be a zero-mean random vector. Whitening linearly transforms X into \tilde{X} , so that the coordinates of \tilde{X} are uncorrelated and have unit variance, i.e., $\mathbb{E}\left[\tilde{X}\tilde{X}^T\right] = I$. Let $\mathbb{E}\left[XX^T\right] = V\Lambda V$ be the eigendecomposition of the covariance, so that $V^T X$ is the projection of X onto its principal directions, as in PCA. The whitening transform is given by $\tilde{X} = V\Lambda^{-\frac{1}{2}}V^T X$ (i.e., each principal component is scaled to have unit variance). Then

$$\mathbb{E}\left[\tilde{X}\tilde{X}^{T}\right] = V\Lambda^{-\frac{1}{2}}V^{T}\mathbb{E}\left[XX^{T}\right]V\Lambda^{-\frac{1}{2}}V^{T}$$
$$= V\Lambda^{-\frac{1}{2}}V^{T}V\Lambda V^{T}V\Lambda^{-\frac{1}{2}}V^{T}$$
$$= I$$

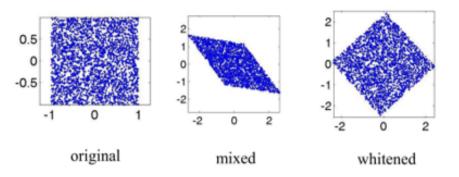


Figure 1: Example of whitening. Figure taken from https://www.cs.cmu.edu/~bapoczos/Classes/ ML10715_2015Fall/slides/ICA.pdf

Remark 1.1. The above procedure, with the rotation back (i.e., the leftmost multiplication by V) is sometimes called ZCA whitening. People often refer to whitening transform without the rotation back, i.e., $\tilde{X} = \Lambda^{-\frac{1}{2}} V^T X$ (known as PCA whitening). You will show in homework that if $X_n = U \Sigma V^T$ is a $n \times d$ data matrix, PCA whitening $\Lambda^{-\frac{1}{2}} V^T X_n^T$ simply returns U^T .

2 Independent Component Analysis

Let $S = (S_1, \ldots, S_d)^T$ be a vector of latent independent random variables (i.e., $\Pr(S) = \Pr(S_1, \ldots, S_d) = \prod_i \Pr(S_i)$), with zero mean and identity covariance. We observe *d* linear combinations of the latent random variables, given by X = AS, where $A \in \mathbb{R}^{n \times n}$ is unknown. Our goal is to recover *S*, by computing $W = A^{-1}$.

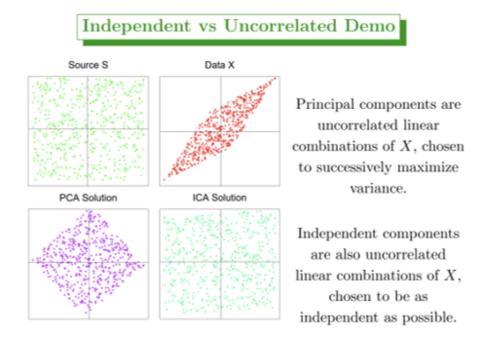


Figure 2: Difference between PCA and ICA. Figure taken from https://hastie.su.domains/Papers/ icatalk.pdf

Suppose that S_1, \ldots, S_d are all standard Gaussian. Assume A is a orthogonal rotation matrix (i.e., $AA^T = I$). Since S has a standard multivariate normal distribution, so does AS (why?). This means that S cannot be recovered (or put another way, A is not identifiable if S is a multivariate normal random vector). Hence from now on we assume all latent variables are non-Gaussian.

3 Nongaussianity

Lyapunov's version of the central limit theorem asserts that sum of independent (not necessarily identically distributed) random variables converges in distribution to normal. Thus, intuitively, a X_j , which is the dot product between the j'th row of A and S is "more Gaussian" any of the S_i 's. We want to recover one of the latent factors S_i , via $Y := w^T X = (w^T A)S$, which is a linear

We want to recover one of the latent factors S_i , via $Y := w^T X = (w^T A)S$, which is a linear combination of the latent factors as well. Hence, to recover one of the components, we wish to find w which maximizes the nonGaussianity of $w^T X$. A popular measure for nonGaussianity is negentropy, described next.

3.1 Negentropy

Definition 3.1. The differential entropy of a random variable Y with density f is $h(Y) := -\int f(y) \log f(y) dy$

Fact 3.2. A Gaussian random variable has the largest entropy among all random variables with equal variance.

Definition 3.3 (Negentropy). The Negentropy of a random variable Y is defined as $J(Y) := h(Y_{Gauss}) - h(Y)$, where $h(Y_{Gauss}) = \frac{1}{2} \log (2\pi e\sigma)$ is the entropy of a Gaussian random variable with the same variance as Y.

Computing h(Y) is hard, as it requires a nonparametric estimation of the density f(Y). Hence, one typically use approximations for it. Specifically, negentropy is typically estimated by a non-quadratic function G (e.g., $G(y) = -\exp(-y^2)$ as

$$J(Y) \propto J(\tilde{Y}) := \left(\mathbb{E}[G(Y)] - \mathbb{E}[G(Z)]\right)^2,$$

where Z is a standard Gaussian random variable. The expectations can be easily estimated using sample averages, bypassing the need for estimation of the density f(Y).

4 Solving ICA

We will aim to find an approximation Y of S. Since independent components are uncorrelated, we can restrict our search to matrices Y_n which are orthogonal, hence whitening can be used as a starting point. Hence before the optimization, we preprocess the data matrix X_n by subtracting the mean from each column, followed by whitening.

The minimization problem can be solved using standard methods, e.g., Newton's method

$$w^{(t+1)} = w^{(t)} - \left(\nabla^2 \tilde{J}(\tilde{X}_n w^{(t)})\right)^{-1} \nabla \tilde{J}(\tilde{X}_n w^{(t)}),$$

where expectations are replaced by sample means. For the first combination w, the requirement unit variance $\operatorname{Var}\left(w^T \tilde{X}\right) = 1$, together with the fact that \tilde{X} is whitened, is equivalent to requiring that w is a unit vector. This can be implemented by rescaling w_t after each iteration of the optimization procedure. For subsequent combination, we want each vector w to live in the orthogonal complement of the w's found so far, which we can achieve by applying Gram-Schmidt:

$$w_k \leftarrow w_k - \sum_{i=1}^{k-1} w_k^T w_i w_i.$$

Further Reading

A good ICA tutorial is https://www.cs.jhu.edu/~ayuille/courses/Stat161-261-Spring14/HyvO00-icatut.pdf.