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1 Whitening

Let X € R™ be a zero-mean random vector. Whitening linearly transforms X into X, so that the
coordinates of X are uncorrelated and have unit variance, i.e., E [XX'T] =1 LetE [XXT] = VAV
be the eigendecomposition of the covariance, so that VX is the projection of X onto its principal
directions, as in PCA. The whitening transform is given by X = VA—2VTX (i.e., each principal
component is scaled to have unit variance). Then

E[XX7] = vA VTR [xXT] VA~ ivT
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Figure 1: Example of whitening. Figure taken from https://www.cs.cmu.edu/~bapoczos/Classes/
ML10715_2015Fall/slides/ICA.pdf

Remark 1.1. The above procedure, with the rotation back (i.e., the leftmost multiplication by V') is
sometimes called ZCA whitening. People often refer to whitening transform without the rotation back,

ie, X = A 2VTX (known as PCA whitening). You will show in homework that if X,, = USV7T is a
n X d data matriz, PCA whitening A_%VTXE simply returns UT.
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2 Independent Component Analysis

Let S = (S1,...54)T be a vector of latent independent random variables (i.e., Pr(S) = Pr(S1,...,Sq) =
I, Pr(S;)), with zero mean and identity covariance. We observe d linear combinations of the latent
random variables, given by X = AS, where A € R™*" is unknown. Our goal is to recover S, by
computing W = A~
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Figure 2: Difference between PCA and ICA. Figure taken from https://hastie.su.domains/Papers/
icatalk.pdf

Suppose that Sy, ..., Sy are all standard Gaussian. Assume A is a orthogonal rotation matrix (i.e.,
AAT =T). Since S has a standard multivariate normal distribution, so does AS (why?). This means
that S cannot be recovered (or put another way, A is not identifiable if S is a multivariate normal
random vector). Hence from now on we assume all latent variables are non-Gaussian.

3 Nongaussianity

Lyapunov’s version of the central limit theorem asserts that sum of independent (not necessarily identi-
cally distributed) random variables converges in distribution to normal. Thus, intuitively, a X;, which
is the dot product between the j’th row of A and S is “more Gaussian” any of the S;’s.

We want to recover one of the latent factors S;, via Y := w?'X = (wTA)S, which is a linear
combination of the latent factors as well. Hence, to recover one of the components, we wish to find w
which maximizes the nonGaussianity of w” X. A popular measure for nonGaussianity is negentropy,
described next.
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3.1 Negentropy
Definition 3.1. The differential entropy of a random variable Y with density f is h(Y) := — [ f(y)log f(y)dy

Fact 3.2. A Gaussian random variable has the largest entropy among all random variables with equal
variance.

Definition 3.3 (Negentropy). The Negentropy of a random variable Y is defined as J(Y') := h(Yaauss) —
h(Y), where h(YGauss) = 3log (2meo) is the entropy of a Gaussian random variable with the same
variance as Y.

Computing h(Y") is hard, as it requires a nonparametric estimation of the density f(Y'). Hence, one
typically use approximations for it. Specifically, negentropy is typically estimated by a non-quadratic
function G (e.g., G(y) = — exp(—y?) as

J(Y) o J(Y) = (BIG(Y)] - EIG(Z)))?,

where Z is a standard Gaussian random variable. The expectations can be easily estimated using sample
averages, bypassing the need for estimation of the density f(Y).

4 Solving ICA

We will aim to find an approximation Y of S. Since independent components are uncorrelated, we can
restrict our search to matrices Y,, which are orthogonal, hence whitening can be used as a starting point.
Hence before the optimization, we preprocess the data matrix X,, by subtracting the mean from each
column, followed by whitening.

The minimization problem can be solved using standard methods, e.g., Newton’s method

~ o~ -1 ~ o~
wD = ) — (VQJ(an(t))) VJ(X,w®),

where expectations are replaced by sample means. For the first combination w, the requirement unit
variance Var (w? X ) = 1, together with the fact that X is whitened, is equivalent to requiring that

w is a unit vector. This can be implemented by rescaling w; after each iteration of the optimization
procedure. For subsequent combination, we want each vector w to live in the orthogonal complement
of the w’s found so far, which we can achieve by applying Gram-Schmidt:

k—1
T
Wy < W — E Wy, W; Wy

i=1

Further Reading

A good ICA tutorial ishttps://www.cs. jhu.edu/~ayuille/courses/Stat161-261-Springl14/Hyv000-icatut.
pdf.
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